MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. C73100 Nickel Silver

R56401 titanium belongs to the titanium alloys classification, while C73100 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is R56401 titanium and the bottom bar is C73100 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.1
3.4 to 8.0
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
43
Shear Strength, MPa 560
260 to 370
Tensile Strength: Ultimate (UTS), MPa 940
450 to 640
Tensile Strength: Yield (Proof), MPa 850
420 to 590

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1610
1030
Melting Onset (Solidus), °C 1560
1000
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
35
Thermal Expansion, µm/m-K 9.6
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 4.5
8.4
Embodied Carbon, kg CO2/kg material 38
3.0
Embodied Energy, MJ/kg 610
49
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
21 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 3440
790 to 1560
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 59
15 to 21
Strength to Weight: Bending, points 48
15 to 20
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 67
15 to 21

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
70.8 to 78
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
18 to 22
Residuals, % 0
0 to 0.5