MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. C85200 Brass

R56401 titanium belongs to the titanium alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is R56401 titanium and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.1
28
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 940
270
Tensile Strength: Yield (Proof), MPa 850
95

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 340
140
Melting Completion (Liquidus), °C 1610
940
Melting Onset (Solidus), °C 1560
930
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
84
Thermal Expansion, µm/m-K 9.6
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
19

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 4.5
8.4
Embodied Carbon, kg CO2/kg material 38
2.8
Embodied Energy, MJ/kg 610
46
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
59
Resilience: Unit (Modulus of Resilience), kJ/m3 3440
42
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 59
8.9
Strength to Weight: Bending, points 48
11
Thermal Diffusivity, mm2/s 2.9
27
Thermal Shock Resistance, points 67
9.3

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
70 to 74
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9