MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. N10665 Nickel

R56401 titanium belongs to the titanium alloys classification, while N10665 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R56401 titanium and the bottom bar is N10665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 9.1
45
Fatigue Strength, MPa 480
340
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
84
Shear Strength, MPa 560
600
Tensile Strength: Ultimate (UTS), MPa 940
860
Tensile Strength: Yield (Proof), MPa 850
400

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
900
Melting Completion (Liquidus), °C 1610
1620
Melting Onset (Solidus), °C 1560
1570
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
11
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
75
Density, g/cm3 4.5
9.3
Embodied Carbon, kg CO2/kg material 38
15
Embodied Energy, MJ/kg 610
200
Embodied Water, L/kg 200
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
320
Resilience: Unit (Modulus of Resilience), kJ/m3 3440
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 59
26
Strength to Weight: Bending, points 48
22
Thermal Diffusivity, mm2/s 2.9
3.1
Thermal Shock Resistance, points 67
27

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
0 to 2.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
64.8 to 74
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0