MakeItFrom.com
Menu (ESC)

R56406 Titanium vs. C43000 Brass

R56406 titanium belongs to the titanium alloys classification, while C43000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is R56406 titanium and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.1
3.0 to 55
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 980
320 to 710
Tensile Strength: Yield (Proof), MPa 850
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1610
1030
Melting Onset (Solidus), °C 1560
1000
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
120
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
28

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 38
2.8
Embodied Energy, MJ/kg 610
46
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 3420
82 to 1350
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 61
10 to 23
Strength to Weight: Bending, points 49
12 to 20
Thermal Diffusivity, mm2/s 2.8
36
Thermal Shock Resistance, points 69
11 to 25

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
84 to 87
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Tin (Sn), % 0
1.7 to 2.7
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5