MakeItFrom.com
Menu (ESC)

R56406 Titanium vs. S40975 Stainless Steel

R56406 titanium belongs to the titanium alloys classification, while S40975 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is R56406 titanium and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
22
Fatigue Strength, MPa 480
210
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 980
460
Tensile Strength: Yield (Proof), MPa 850
310

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
710
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
26
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
6.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 38
2.0
Embodied Energy, MJ/kg 610
28
Embodied Water, L/kg 200
95

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
93
Resilience: Unit (Modulus of Resilience), kJ/m3 3420
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 61
17
Strength to Weight: Bending, points 49
17
Thermal Diffusivity, mm2/s 2.8
7.0
Thermal Shock Resistance, points 69
17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
84.4 to 89
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0.5 to 1.0
Nitrogen (N), % 0 to 0.050
0 to 0.030
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.1 to 91
0 to 0.75
Vanadium (V), % 3.5 to 4.5
0