MakeItFrom.com
Menu (ESC)

R56406 Titanium vs. ZK51A Magnesium

R56406 titanium belongs to the titanium alloys classification, while ZK51A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R56406 titanium and the bottom bar is ZK51A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
45
Elongation at Break, % 9.1
4.7
Fatigue Strength, MPa 480
62
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
18
Tensile Strength: Ultimate (UTS), MPa 980
240
Tensile Strength: Yield (Proof), MPa 850
150

Thermal Properties

Latent Heat of Fusion, J/g 410
340
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
550
Specific Heat Capacity, J/kg-K 560
970
Thermal Conductivity, W/m-K 7.1
110
Thermal Expansion, µm/m-K 9.6
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
1.8
Embodied Carbon, kg CO2/kg material 38
24
Embodied Energy, MJ/kg 610
160
Embodied Water, L/kg 200
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
10
Resilience: Unit (Modulus of Resilience), kJ/m3 3420
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
64
Strength to Weight: Axial, points 61
36
Strength to Weight: Bending, points 49
47
Thermal Diffusivity, mm2/s 2.8
61
Thermal Shock Resistance, points 69
15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0
Magnesium (Mg), % 0
93.1 to 95.9
Nickel (Ni), % 0
0 to 0.010
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
3.6 to 5.5
Zirconium (Zr), % 0
0.5 to 1.0
Residuals, % 0
0 to 0.3