MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. 3102 Aluminum

R58150 titanium belongs to the titanium alloys classification, while 3102 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is 3102 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
69
Elongation at Break, % 13
23 to 28
Fatigue Strength, MPa 330
31 to 34
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 52
26
Shear Strength, MPa 470
58 to 65
Tensile Strength: Ultimate (UTS), MPa 770
92 to 100
Tensile Strength: Yield (Proof), MPa 550
28 to 34

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1760
640
Melting Onset (Solidus), °C 1700
640
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 8.4
23

Otherwise Unclassified Properties

Base Metal Price, % relative 48
9.0
Density, g/cm3 5.4
2.7
Embodied Carbon, kg CO2/kg material 31
8.2
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
5.8 to 8.3
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
50
Strength to Weight: Axial, points 40
9.4 to 10
Strength to Weight: Bending, points 35
17 to 18
Thermal Shock Resistance, points 48
4.1 to 4.4

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.95
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
0 to 0.7
Manganese (Mn), % 0
0.050 to 0.4
Molybdenum (Mo), % 14 to 16
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 83.5 to 86
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15