MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. 413.0 Aluminum

R58150 titanium belongs to the titanium alloys classification, while 413.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R58150 titanium and the bottom bar is 413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
73
Elongation at Break, % 13
2.5
Fatigue Strength, MPa 330
130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 52
28
Shear Strength, MPa 470
170
Tensile Strength: Ultimate (UTS), MPa 770
270
Tensile Strength: Yield (Proof), MPa 550
140

Thermal Properties

Latent Heat of Fusion, J/g 410
570
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1760
590
Melting Onset (Solidus), °C 1700
580
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 8.4
20

Otherwise Unclassified Properties

Base Metal Price, % relative 48
9.5
Density, g/cm3 5.4
2.6
Embodied Carbon, kg CO2/kg material 31
7.6
Embodied Energy, MJ/kg 480
140
Embodied Water, L/kg 150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
130
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 32
53
Strength to Weight: Axial, points 40
29
Strength to Weight: Bending, points 35
36
Thermal Shock Resistance, points 48
13

Alloy Composition

Aluminum (Al), % 0
82.2 to 89
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 14 to 16
0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
11 to 13
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 83.5 to 86
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25