MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. ASTM A588 Steel

R58150 titanium belongs to the titanium alloys classification, while ASTM A588 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is ASTM A588 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 13
22
Fatigue Strength, MPa 330
270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 52
73
Shear Strength, MPa 470
350
Tensile Strength: Ultimate (UTS), MPa 770
550
Tensile Strength: Yield (Proof), MPa 550
390

Thermal Properties

Latent Heat of Fusion, J/g 410
250 to 260
Maximum Temperature: Mechanical, °C 320
410
Melting Completion (Liquidus), °C 1760
1460
Melting Onset (Solidus), °C 1700
1410 to 1420
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 8.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 48
2.3 to 2.5
Density, g/cm3 5.4
7.8
Embodied Carbon, kg CO2/kg material 31
1.5 to 1.6
Embodied Energy, MJ/kg 480
20 to 22
Embodied Water, L/kg 150
50 to 51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 40
20
Strength to Weight: Bending, points 35
19
Thermal Shock Resistance, points 48
16