MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. ASTM Grade HI Steel

R58150 titanium belongs to the titanium alloys classification, while ASTM grade HI steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is ASTM grade HI steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 13
11
Fatigue Strength, MPa 330
150
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 52
79
Tensile Strength: Ultimate (UTS), MPa 770
550
Tensile Strength: Yield (Proof), MPa 550
270

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1760
1400
Melting Onset (Solidus), °C 1700
1350
Specific Heat Capacity, J/kg-K 500
490
Thermal Expansion, µm/m-K 8.4
17

Otherwise Unclassified Properties

Base Metal Price, % relative 48
23
Density, g/cm3 5.4
7.8
Embodied Carbon, kg CO2/kg material 31
4.1
Embodied Energy, MJ/kg 480
59
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
52
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 40
20
Strength to Weight: Bending, points 35
19
Thermal Shock Resistance, points 48
12

Alloy Composition

Carbon (C), % 0 to 0.1
0.2 to 0.5
Chromium (Cr), % 0
26 to 30
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
46.9 to 59.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 14 to 16
0 to 0.5
Nickel (Ni), % 0
14 to 18
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 83.5 to 86
0