MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. AWS BNi-2

R58150 titanium belongs to the titanium alloys classification, while AWS BNi-2 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is AWS BNi-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
180
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 52
68
Tensile Strength: Ultimate (UTS), MPa 770
440

Thermal Properties

Latent Heat of Fusion, J/g 410
360
Melting Completion (Liquidus), °C 1760
1000
Melting Onset (Solidus), °C 1700
970
Specific Heat Capacity, J/kg-K 500
490
Thermal Expansion, µm/m-K 8.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 48
55
Density, g/cm3 5.4
8.2
Embodied Carbon, kg CO2/kg material 31
9.3
Embodied Energy, MJ/kg 480
130
Embodied Water, L/kg 150
230

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 32
23
Strength to Weight: Axial, points 40
15
Strength to Weight: Bending, points 35
16
Thermal Shock Resistance, points 48
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
2.8 to 3.5
Carbon (C), % 0 to 0.1
0 to 0.060
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
2.5 to 3.5
Molybdenum (Mo), % 14 to 16
0
Nickel (Ni), % 0
79.1 to 84.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
4.0 to 5.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 83.5 to 86
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5