MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. SAE-AISI A9 Steel

R58150 titanium belongs to the titanium alloys classification, while SAE-AISI A9 steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is SAE-AISI A9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 52
74
Tensile Strength: Ultimate (UTS), MPa 770
770 to 2030

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Melting Completion (Liquidus), °C 1760
1460
Melting Onset (Solidus), °C 1700
1410
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 8.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 48
7.0
Density, g/cm3 5.4
7.8
Embodied Carbon, kg CO2/kg material 31
4.7
Embodied Energy, MJ/kg 480
70
Embodied Water, L/kg 150
82

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 40
28 to 73
Strength to Weight: Bending, points 35
24 to 46
Thermal Shock Resistance, points 48
25 to 66

Alloy Composition

Carbon (C), % 0 to 0.1
0.45 to 0.55
Chromium (Cr), % 0
4.8 to 5.5
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
87 to 90.5
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 14 to 16
1.3 to 1.8
Nickel (Ni), % 0
1.3 to 1.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
1.0 to 1.2
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 83.5 to 86
0
Vanadium (V), % 0
0.8 to 1.4