MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. S82122 Stainless Steel

R58150 titanium belongs to the titanium alloys classification, while S82122 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 13
34
Fatigue Strength, MPa 330
360
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 52
78
Shear Strength, MPa 470
460
Tensile Strength: Ultimate (UTS), MPa 770
680
Tensile Strength: Yield (Proof), MPa 550
450

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1760
1420
Melting Onset (Solidus), °C 1700
1380
Specific Heat Capacity, J/kg-K 500
480
Thermal Expansion, µm/m-K 8.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 48
12
Density, g/cm3 5.4
7.7
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 480
37
Embodied Water, L/kg 150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
510
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 40
25
Strength to Weight: Bending, points 35
22
Thermal Shock Resistance, points 48
19

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
20.5 to 21.5
Copper (Cu), % 0
0.5 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
68.9 to 75.4
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 14 to 16
0 to 0.6
Nickel (Ni), % 0
1.5 to 2.5
Nitrogen (N), % 0 to 0.050
0.15 to 0.2
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 83.5 to 86
0