R60705 Alloy vs. CR003A Copper
R60705 alloy belongs to the otherwise unclassified metals classification, while CR003A copper belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.
For each property being compared, the top bar is R60705 alloy and the bottom bar is CR003A copper.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 98 | |
120 |
Elongation at Break, % | 18 | |
15 |
Poisson's Ratio | 0.34 | |
0.34 |
Shear Modulus, GPa | 37 | |
43 |
Tensile Strength: Ultimate (UTS), MPa | 540 | |
230 |
Tensile Strength: Yield (Proof), MPa | 430 | |
140 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
210 |
Specific Heat Capacity, J/kg-K | 270 | |
390 |
Thermal Conductivity, W/m-K | 17 | |
380 |
Thermal Expansion, µm/m-K | 6.3 | |
17 |
Otherwise Unclassified Properties
Density, g/cm3 | 6.7 | |
9.0 |
Embodied Water, L/kg | 450 | |
310 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 90 | |
31 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 950 | |
83 |
Stiffness to Weight: Axial, points | 8.1 | |
7.2 |
Stiffness to Weight: Bending, points | 23 | |
18 |
Strength to Weight: Axial, points | 22 | |
7.1 |
Strength to Weight: Bending, points | 22 | |
9.3 |
Thermal Diffusivity, mm2/s | 9.5 | |
110 |
Thermal Shock Resistance, points | 63 | |
8.1 |
Alloy Composition
Antimony (Sb), % | 0 | |
0 to 0.00040 |
Arsenic (As), % | 0 | |
0 to 0.00050 |
Bismuth (Bi), % | 0 | |
0 to 0.00020 |
Carbon (C), % | 0 to 0.050 | |
0 |
Chromium (Cr), % | 0 to 0.2 | |
0 |
Copper (Cu), % | 0 | |
99.954 to 100 |
Hafnium (Hf), % | 0 to 4.5 | |
0 |
Hydrogen (H), % | 0 to 0.0050 | |
0 |
Iron (Fe), % | 0 to 0.2 | |
0 to 0.0010 |
Lead (Pb), % | 0 | |
0 to 0.00050 |
Niobium (Nb), % | 2.0 to 3.0 | |
0 |
Nitrogen (N), % | 0 to 0.025 | |
0 |
Oxygen (O), % | 0 to 0.18 | |
0 to 0.040 |
Selenium (Se), % | 0 | |
0 to 0.00020 |
Silver (Ag), % | 0 | |
0 to 0.0025 |
Sulfur (S), % | 0 | |
0 to 0.0015 |
Tellurium (Te), % | 0 | |
0 to 0.00020 |
Zirconium (Zr), % | 91 to 98 | |
0 |