R60802 Alloy vs. SAE-AISI 1527 Steel
R60802 alloy belongs to the otherwise unclassified metals classification, while SAE-AISI 1527 steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.
For each property being compared, the top bar is R60802 alloy and the bottom bar is SAE-AISI 1527 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 98 | |
190 |
Elongation at Break, % | 22 | |
13 to 21 |
Poisson's Ratio | 0.34 | |
0.29 |
Shear Modulus, GPa | 36 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 430 | |
590 to 640 |
Tensile Strength: Yield (Proof), MPa | 270 | |
320 to 550 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Specific Heat Capacity, J/kg-K | 270 | |
470 |
Thermal Conductivity, W/m-K | 22 | |
52 |
Thermal Expansion, µm/m-K | 6.0 | |
12 |
Otherwise Unclassified Properties
Density, g/cm3 | 6.5 | |
7.8 |
Embodied Water, L/kg | 290 | |
47 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 85 | |
82 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 380 | |
260 to 800 |
Stiffness to Weight: Axial, points | 8.3 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 18 | |
21 to 23 |
Strength to Weight: Bending, points | 19 | |
20 to 21 |
Thermal Diffusivity, mm2/s | 12 | |
14 |
Thermal Shock Resistance, points | 53 | |
19 to 20 |
Alloy Composition
Carbon (C), % | 0 | |
0.22 to 0.29 |
Chromium (Cr), % | 0.050 to 0.15 | |
0 |
Iron (Fe), % | 0.070 to 0.2 | |
98.1 to 98.6 |
Manganese (Mn), % | 0 | |
1.2 to 1.5 |
Nickel (Ni), % | 0.030 to 0.080 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.040 |
Sulfur (S), % | 0 | |
0 to 0.050 |
Tin (Sn), % | 1.2 to 1.7 | |
0 |
Zirconium (Zr), % | 97.8 to 98.7 | |
0 |
Residuals, % | 0 to 0.11 | |
0 |