R60901 Alloy vs. SAE-AISI 1065 Steel
R60901 alloy belongs to the otherwise unclassified metals classification, while SAE-AISI 1065 steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.
For each property being compared, the top bar is R60901 alloy and the bottom bar is SAE-AISI 1065 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 98 | |
190 |
Elongation at Break, % | 17 to 22 | |
11 to 14 |
Poisson's Ratio | 0.34 | |
0.29 |
Shear Modulus, GPa | 37 | |
72 |
Tensile Strength: Ultimate (UTS), MPa | 500 to 580 | |
710 to 780 |
Tensile Strength: Yield (Proof), MPa | 350 to 390 | |
430 to 550 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Specific Heat Capacity, J/kg-K | 270 | |
470 |
Thermal Conductivity, W/m-K | 17 | |
51 |
Thermal Expansion, µm/m-K | 6.3 | |
11 |
Otherwise Unclassified Properties
Density, g/cm3 | 6.6 | |
7.8 |
Embodied Water, L/kg | 270 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 88 to 100 | |
74 to 90 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 640 to 760 | |
490 to 820 |
Stiffness to Weight: Axial, points | 8.3 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 21 to 25 | |
25 to 28 |
Strength to Weight: Bending, points | 21 to 24 | |
23 to 24 |
Thermal Diffusivity, mm2/s | 9.7 | |
14 |
Thermal Shock Resistance, points | 58 to 67 | |
25 to 27 |
Alloy Composition
Carbon (C), % | 0 | |
0.6 to 0.7 |
Iron (Fe), % | 0 | |
98.3 to 98.8 |
Manganese (Mn), % | 0 | |
0.6 to 0.9 |
Niobium (Nb), % | 2.4 to 2.8 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.040 |
Sulfur (S), % | 0 | |
0 to 0.050 |
Zirconium (Zr), % | 96.8 to 97.5 | |
0 |
Residuals, % | 0 to 0.29 | |
0 |