MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. 213.0 Aluminum

S13800 stainless steel belongs to the iron alloys classification, while 213.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is 213.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 480
85
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 11 to 18
1.5
Fatigue Strength, MPa 410 to 870
93
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
190
Tensile Strength: Yield (Proof), MPa 660 to 1580
130

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 810
170
Melting Completion (Liquidus), °C 1450
670
Melting Onset (Solidus), °C 1410
480
Specific Heat Capacity, J/kg-K 470
850
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
94

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.9
3.2
Embodied Carbon, kg CO2/kg material 3.4
7.7
Embodied Energy, MJ/kg 46
140
Embodied Water, L/kg 140
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 35 to 61
16
Strength to Weight: Bending, points 28 to 41
23
Thermal Diffusivity, mm2/s 4.3
49
Thermal Shock Resistance, points 33 to 58
8.0

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
83.5 to 93
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0
Copper (Cu), % 0
6.0 to 8.0
Iron (Fe), % 73.6 to 77.3
0 to 1.2
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.2
0 to 0.6
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0 to 0.35
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
1.0 to 3.0
Sulfur (S), % 0 to 0.0080
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 2.5
Residuals, % 0
0 to 0.5