MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. 5082 Aluminum

S13800 stainless steel belongs to the iron alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 11 to 18
1.1
Fatigue Strength, MPa 410 to 870
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 610 to 1030
210 to 230
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
380 to 400
Tensile Strength: Yield (Proof), MPa 660 to 1580
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 810
180
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.4
8.9
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
670 to 870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 35 to 61
39 to 41
Strength to Weight: Bending, points 28 to 41
43 to 45
Thermal Diffusivity, mm2/s 4.3
54
Thermal Shock Resistance, points 33 to 58
17 to 18

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
93.5 to 96
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0 to 0.15
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 73.6 to 77.3
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 0.2
0 to 0.15
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Sulfur (S), % 0 to 0.0080
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15