MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. AISI 316L Stainless Steel

Both S13800 stainless steel and AISI 316L stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 480
170 to 350
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11 to 18
9.0 to 50
Fatigue Strength, MPa 410 to 870
170 to 450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 610 to 1030
370 to 690
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
530 to 1160
Tensile Strength: Yield (Proof), MPa 660 to 1580
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 390
410
Maximum Temperature: Mechanical, °C 810
870
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.4
3.9
Embodied Energy, MJ/kg 46
53
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 21
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
93 to 1880
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 35 to 61
19 to 41
Strength to Weight: Bending, points 28 to 41
18 to 31
Thermal Diffusivity, mm2/s 4.3
4.1
Thermal Shock Resistance, points 33 to 58
12 to 25

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 12.3 to 13.2
16 to 18
Iron (Fe), % 73.6 to 77.3
62 to 72
Manganese (Mn), % 0 to 0.2
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
2.0 to 3.0
Nickel (Ni), % 7.5 to 8.5
10 to 14
Nitrogen (N), % 0 to 0.010
0 to 0.1
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0 to 0.0080
0 to 0.030