MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. ASTM A231 Spring Steel

Both S13800 stainless steel and ASTM A231 spring steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is ASTM A231 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 480
540
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11 to 18
14
Fatigue Strength, MPa 410 to 870
1000
Poisson's Ratio 0.28
0.29
Reduction in Area, % 39 to 62
46
Shear Modulus, GPa 77
73
Shear Strength, MPa 610 to 1030
1080
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
1790
Tensile Strength: Yield (Proof), MPa 660 to 1580
1570

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 810
420
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
52
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.0
Embodied Energy, MJ/kg 46
28
Embodied Water, L/kg 140
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 35 to 61
64
Strength to Weight: Bending, points 28 to 41
42
Thermal Diffusivity, mm2/s 4.3
14
Thermal Shock Resistance, points 33 to 58
53

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
0
Carbon (C), % 0 to 0.050
0.48 to 0.53
Chromium (Cr), % 12.3 to 13.2
0.8 to 1.1
Iron (Fe), % 73.6 to 77.3
96.7 to 97.7
Manganese (Mn), % 0 to 0.2
0.7 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0 to 0.0080
0 to 0.040
Vanadium (V), % 0
0.15 to 0.3