MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. EN AC-46400 Aluminum

S13800 stainless steel belongs to the iron alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 480
77 to 120
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 11 to 18
1.1 to 1.7
Fatigue Strength, MPa 410 to 870
75 to 85
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
170 to 310
Tensile Strength: Yield (Proof), MPa 660 to 1580
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
520
Maximum Temperature: Mechanical, °C 810
170
Melting Completion (Liquidus), °C 1450
610
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.4
7.8
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 35 to 61
18 to 32
Strength to Weight: Bending, points 28 to 41
26 to 38
Thermal Diffusivity, mm2/s 4.3
55
Thermal Shock Resistance, points 33 to 58
7.8 to 14

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
85.4 to 90.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0
Copper (Cu), % 0
0.8 to 1.3
Iron (Fe), % 73.6 to 77.3
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 0.2
0.15 to 0.55
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0 to 0.2
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
8.3 to 9.7
Sulfur (S), % 0 to 0.0080
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.25