MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. Grade C-5 Titanium

S13800 stainless steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 480
310
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 18
6.7
Fatigue Strength, MPa 410 to 870
510
Poisson's Ratio 0.28
0.32
Rockwell C Hardness 30 to 51
34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
1000
Tensile Strength: Yield (Proof), MPa 660 to 1580
940

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 810
340
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 16
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 15
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 3.4
38
Embodied Energy, MJ/kg 46
610
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
66
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 35 to 61
63
Strength to Weight: Bending, points 28 to 41
50
Thermal Diffusivity, mm2/s 4.3
2.9
Thermal Shock Resistance, points 33 to 58
71

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
5.5 to 6.8
Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 12.3 to 13.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 73.6 to 77.3
0 to 0.4
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0 to 0.050
Nitrogen (N), % 0 to 0.010
0
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.0080
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4