MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. C19500 Copper

S13800 stainless steel belongs to the iron alloys classification, while C19500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is C19500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 11 to 18
2.3 to 38
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 610 to 1030
260 to 360
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
380 to 640
Tensile Strength: Yield (Proof), MPa 660 to 1580
120 to 600

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 810
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1410
1090
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
200
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
50 to 56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
50 to 57

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 46
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
14 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
59 to 1530
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 35 to 61
12 to 20
Strength to Weight: Bending, points 28 to 41
13 to 18
Thermal Diffusivity, mm2/s 4.3
58
Thermal Shock Resistance, points 33 to 58
13 to 23

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
0 to 0.020
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0
Cobalt (Co), % 0
0.3 to 1.3
Copper (Cu), % 0
94.9 to 98.6
Iron (Fe), % 73.6 to 77.3
1.0 to 2.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0.010 to 0.35
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.0080
0
Tin (Sn), % 0
0.1 to 1.0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2