MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. C46200 Brass

S13800 stainless steel belongs to the iron alloys classification, while C46200 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is C46200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 11 to 18
17 to 34
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 610 to 1030
240 to 290
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
370 to 480
Tensile Strength: Yield (Proof), MPa 660 to 1580
120 to 290

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 810
120
Melting Completion (Liquidus), °C 1450
840
Melting Onset (Solidus), °C 1410
800
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
20

Otherwise Unclassified Properties

Base Metal Price, % relative 15
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 46
46
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
72 to 400
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 35 to 61
13 to 16
Strength to Weight: Bending, points 28 to 41
14 to 17
Thermal Diffusivity, mm2/s 4.3
35
Thermal Shock Resistance, points 33 to 58
12 to 16

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 73.6 to 77.3
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.0080
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
33.3 to 37.5
Residuals, % 0
0 to 0.4