MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. C82400 Copper

S13800 stainless steel belongs to the iron alloys classification, while C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 11 to 18
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
500 to 1030
Tensile Strength: Yield (Proof), MPa 660 to 1580
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 810
270
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
26

Otherwise Unclassified Properties

Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.4
8.9
Embodied Energy, MJ/kg 46
140
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
270 to 3870
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 35 to 61
16 to 33
Strength to Weight: Bending, points 28 to 41
16 to 26
Thermal Diffusivity, mm2/s 4.3
39
Thermal Shock Resistance, points 33 to 58
17 to 36

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 0
96 to 98.2
Iron (Fe), % 73.6 to 77.3
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0 to 0.2
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.0080
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5