MakeItFrom.com
Menu (ESC)

S13800 Stainless Steel vs. C92500 Bronze

S13800 stainless steel belongs to the iron alloys classification, while C92500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S13800 stainless steel and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 18
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 980 to 1730
310
Tensile Strength: Yield (Proof), MPa 660 to 1580
190

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 810
170
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 16
63
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 15
35
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 3.4
3.7
Embodied Energy, MJ/kg 46
61
Embodied Water, L/kg 140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
30
Resilience: Unit (Modulus of Resilience), kJ/m3 1090 to 5490
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 35 to 61
9.8
Strength to Weight: Bending, points 28 to 41
12
Thermal Diffusivity, mm2/s 4.3
20
Thermal Shock Resistance, points 33 to 58
12

Alloy Composition

Aluminum (Al), % 0.9 to 1.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12.3 to 13.2
0
Copper (Cu), % 0
85 to 88
Iron (Fe), % 73.6 to 77.3
0 to 0.3
Lead (Pb), % 0
1.0 to 1.5
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 7.5 to 8.5
0.8 to 1.5
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.0080
0 to 0.050
Tin (Sn), % 0
10 to 12
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.7