MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. 6182 Aluminum

S15500 stainless steel belongs to the iron alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 6.8 to 16
6.8 to 13
Fatigue Strength, MPa 350 to 650
63 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 540 to 870
140 to 190
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
230 to 320
Tensile Strength: Yield (Proof), MPa 590 to 1310
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 820
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 17
160
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.4
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
110 to 520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 32 to 53
23 to 32
Strength to Weight: Bending, points 26 to 37
30 to 38
Thermal Diffusivity, mm2/s 4.6
65
Thermal Shock Resistance, points 30 to 50
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0 to 0.25
Copper (Cu), % 2.5 to 4.5
0 to 0.1
Iron (Fe), % 71.9 to 79.9
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.9 to 1.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15