MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. 710.0 Aluminum

S15500 stainless steel belongs to the iron alloys classification, while 710.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
75
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 6.8 to 16
2.2 to 3.6
Fatigue Strength, MPa 350 to 650
55 to 110
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
26
Shear Strength, MPa 540 to 870
180
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
240 to 250
Tensile Strength: Yield (Proof), MPa 590 to 1310
160

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 820
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 17
140
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
4.9 to 7.9
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
180 to 190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 32 to 53
23
Strength to Weight: Bending, points 26 to 37
29
Thermal Diffusivity, mm2/s 4.6
53
Thermal Shock Resistance, points 30 to 50
10 to 11

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.1
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
0.35 to 0.65
Iron (Fe), % 71.9 to 79.9
0 to 0.5
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15