MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. 7129 Aluminum

S15500 stainless steel belongs to the iron alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 6.8 to 16
9.0 to 9.1
Fatigue Strength, MPa 350 to 650
150 to 190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 540 to 870
250 to 260
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
430
Tensile Strength: Yield (Proof), MPa 590 to 1310
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 820
180
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 17
150
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
1050 to 1090
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 32 to 53
41
Strength to Weight: Bending, points 26 to 37
43 to 44
Thermal Diffusivity, mm2/s 4.6
58
Thermal Shock Resistance, points 30 to 50
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0 to 0.1
Copper (Cu), % 2.5 to 4.5
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 71.9 to 79.9
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15