MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. EN 1.4539 Stainless Steel

Both S15500 stainless steel and EN 1.4539 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is EN 1.4539 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
200
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 6.8 to 16
38
Fatigue Strength, MPa 350 to 650
220
Impact Strength: V-Notched Charpy, J 7.8 to 53
90
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
79
Shear Strength, MPa 540 to 870
430
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
630
Tensile Strength: Yield (Proof), MPa 590 to 1310
260

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 440
420
Maximum Temperature: Mechanical, °C 820
1100
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 17
12
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.7
5.7
Embodied Energy, MJ/kg 39
78
Embodied Water, L/kg 130
200

Common Calculations

PREN (Pitting Resistance) 15
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
190
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 53
22
Strength to Weight: Bending, points 26 to 37
20
Thermal Diffusivity, mm2/s 4.6
3.2
Thermal Shock Resistance, points 30 to 50
14

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.020
Chromium (Cr), % 14 to 15.5
19 to 21
Copper (Cu), % 2.5 to 4.5
1.2 to 2.0
Iron (Fe), % 71.9 to 79.9
43.1 to 51.8
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 3.5 to 5.5
24 to 26
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.010