MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. EN 1.7365 Steel

Both S15500 stainless steel and EN 1.7365 steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is EN 1.7365 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 6.8 to 16
18
Fatigue Strength, MPa 350 to 650
320
Impact Strength: V-Notched Charpy, J 7.8 to 53
31
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
74
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
700
Tensile Strength: Yield (Proof), MPa 590 to 1310
470

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 820
510
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
4.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 39
24
Embodied Water, L/kg 130
70

Common Calculations

PREN (Pitting Resistance) 15
6.8
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 53
25
Strength to Weight: Bending, points 26 to 37
22
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 30 to 50
20

Alloy Composition

Carbon (C), % 0 to 0.070
0.12 to 0.19
Chromium (Cr), % 14 to 15.5
4.0 to 6.0
Copper (Cu), % 2.5 to 4.5
0 to 0.3
Iron (Fe), % 71.9 to 79.9
91.2 to 94.9
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.050