MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. EN AC-51200 Aluminum

S15500 stainless steel belongs to the iron alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
80
Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 6.8 to 16
1.1
Fatigue Strength, MPa 350 to 650
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
25
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
220
Tensile Strength: Yield (Proof), MPa 590 to 1310
150

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 820
170
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 17
92
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
74

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.7
9.6
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 32 to 53
24
Strength to Weight: Bending, points 26 to 37
31
Thermal Diffusivity, mm2/s 4.6
39
Thermal Shock Resistance, points 30 to 50
10

Alloy Composition

Aluminum (Al), % 0
84.5 to 92
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
0 to 0.1
Iron (Fe), % 71.9 to 79.9
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 3.5 to 5.5
0 to 0.1
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15