S15500 Stainless Steel vs. Grade 18 Titanium
S15500 stainless steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is S15500 stainless steel and the bottom bar is grade 18 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 6.8 to 16 | |
11 to 17 |
Fatigue Strength, MPa | 350 to 650 | |
330 to 480 |
Poisson's Ratio | 0.28 | |
0.32 |
Reduction in Area, % | 17 to 40 | |
23 |
Shear Modulus, GPa | 75 | |
40 |
Shear Strength, MPa | 540 to 870 | |
420 to 590 |
Tensile Strength: Ultimate (UTS), MPa | 890 to 1490 | |
690 to 980 |
Tensile Strength: Yield (Proof), MPa | 590 to 1310 | |
540 to 810 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
410 |
Maximum Temperature: Mechanical, °C | 820 | |
330 |
Melting Completion (Liquidus), °C | 1430 | |
1640 |
Melting Onset (Solidus), °C | 1380 | |
1590 |
Specific Heat Capacity, J/kg-K | 480 | |
550 |
Thermal Conductivity, W/m-K | 17 | |
8.3 |
Thermal Expansion, µm/m-K | 11 | |
9.9 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.2 | |
1.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.5 | |
2.7 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.8 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
41 |
Embodied Energy, MJ/kg | 39 | |
670 |
Embodied Water, L/kg | 130 | |
270 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 98 to 120 | |
87 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 890 to 4460 | |
1380 to 3110 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
35 |
Strength to Weight: Axial, points | 32 to 53 | |
43 to 61 |
Strength to Weight: Bending, points | 26 to 37 | |
39 to 49 |
Thermal Diffusivity, mm2/s | 4.6 | |
3.4 |
Thermal Shock Resistance, points | 30 to 50 | |
47 to 67 |
Alloy Composition
Aluminum (Al), % | 0 | |
2.5 to 3.5 |
Carbon (C), % | 0 to 0.070 | |
0 to 0.080 |
Chromium (Cr), % | 14 to 15.5 | |
0 |
Copper (Cu), % | 2.5 to 4.5 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 71.9 to 79.9 | |
0 to 0.25 |
Manganese (Mn), % | 0 to 1.0 | |
0 |
Nickel (Ni), % | 3.5 to 5.5 | |
0 |
Niobium (Nb), % | 0.15 to 0.45 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.15 |
Palladium (Pd), % | 0 | |
0.040 to 0.080 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Titanium (Ti), % | 0 | |
92.5 to 95.5 |
Vanadium (V), % | 0 | |
2.0 to 3.0 |
Residuals, % | 0 | |
0 to 0.4 |