MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. Grade Ti-Pd18 Titanium

S15500 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
320
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 16
17
Fatigue Strength, MPa 350 to 650
350
Poisson's Ratio 0.28
0.32
Rockwell C Hardness 27 to 46
34
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
710
Tensile Strength: Yield (Proof), MPa 590 to 1310
540

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 820
330
Melting Completion (Liquidus), °C 1430
1640
Melting Onset (Solidus), °C 1380
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 17
8.2
Thermal Expansion, µm/m-K 11
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.7
41
Embodied Energy, MJ/kg 39
670
Embodied Water, L/kg 130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 32 to 53
44
Strength to Weight: Bending, points 26 to 37
39
Thermal Diffusivity, mm2/s 4.6
3.3
Thermal Shock Resistance, points 30 to 50
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.070
0 to 0.1
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 71.9 to 79.9
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.050
Niobium (Nb), % 0.15 to 0.45
0
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4