MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C61800 Bronze

S15500 stainless steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 16
26
Fatigue Strength, MPa 350 to 650
190
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 540 to 870
310
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
740
Tensile Strength: Yield (Proof), MPa 590 to 1310
310

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 820
220
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 17
64
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 39
52
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 53
25
Strength to Weight: Bending, points 26 to 37
22
Thermal Diffusivity, mm2/s 4.6
18
Thermal Shock Resistance, points 30 to 50
26

Alloy Composition

Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
86.9 to 91
Iron (Fe), % 71.9 to 79.9
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5