MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C67400 Bronze

S15500 stainless steel belongs to the iron alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 16
22 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
41
Shear Strength, MPa 540 to 870
310 to 350
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
480 to 610
Tensile Strength: Yield (Proof), MPa 590 to 1310
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 820
130
Melting Completion (Liquidus), °C 1430
890
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
100
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
26

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 39
48
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
300 to 660
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 32 to 53
17 to 22
Strength to Weight: Bending, points 26 to 37
17 to 20
Thermal Diffusivity, mm2/s 4.6
32
Thermal Shock Resistance, points 30 to 50
16 to 20

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
57 to 60
Iron (Fe), % 71.9 to 79.9
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 1.0
2.0 to 3.5
Nickel (Ni), % 3.5 to 5.5
0 to 0.25
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5