MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C81400 Copper

S15500 stainless steel belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.8 to 16
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
370
Tensile Strength: Yield (Proof), MPa 590 to 1310
250

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 820
200
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1380
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
260
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
61

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 39
45
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
36
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
260
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 53
11
Strength to Weight: Bending, points 26 to 37
13
Thermal Diffusivity, mm2/s 4.6
75
Thermal Shock Resistance, points 30 to 50
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0.6 to 1.0
Copper (Cu), % 2.5 to 4.5
98.4 to 99.38
Iron (Fe), % 71.9 to 79.9
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5