MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C82400 Copper

S15500 stainless steel belongs to the iron alloys classification, while C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.8 to 16
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
500 to 1030
Tensile Strength: Yield (Proof), MPa 590 to 1310
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 820
270
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
26

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.7
8.9
Embodied Energy, MJ/kg 39
140
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
270 to 3870
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 53
16 to 33
Strength to Weight: Bending, points 26 to 37
16 to 26
Thermal Diffusivity, mm2/s 4.6
39
Thermal Shock Resistance, points 30 to 50
17 to 36

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 2.5 to 4.5
96 to 98.2
Iron (Fe), % 71.9 to 79.9
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.2
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5