MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C84800 Brass

S15500 stainless steel belongs to the iron alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 6.8 to 16
18
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
39
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
230
Tensile Strength: Yield (Proof), MPa 590 to 1310
100

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 820
150
Melting Completion (Liquidus), °C 1430
950
Melting Onset (Solidus), °C 1380
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 17
72
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 13
27
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 39
46
Embodied Water, L/kg 130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
34
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
53
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 53
7.3
Strength to Weight: Bending, points 26 to 37
9.6
Thermal Diffusivity, mm2/s 4.6
23
Thermal Shock Resistance, points 30 to 50
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
75 to 77
Iron (Fe), % 71.9 to 79.9
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0 to 1.0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7