MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C95800 Bronze

S15500 stainless steel belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.8 to 16
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
660
Tensile Strength: Yield (Proof), MPa 590 to 1310
270

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 820
230
Melting Completion (Liquidus), °C 1430
1060
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 17
36
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 39
55
Embodied Water, L/kg 130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
310
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 32 to 53
22
Strength to Weight: Bending, points 26 to 37
20
Thermal Diffusivity, mm2/s 4.6
9.9
Thermal Shock Resistance, points 30 to 50
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
79 to 83.2
Iron (Fe), % 71.9 to 79.9
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Nickel (Ni), % 3.5 to 5.5
4.0 to 5.0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5