MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C96800 Copper

S15500 stainless steel belongs to the iron alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.8 to 16
3.4
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
46
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
1010
Tensile Strength: Yield (Proof), MPa 590 to 1310
860

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 820
220
Melting Completion (Liquidus), °C 1430
1120
Melting Onset (Solidus), °C 1380
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
52
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 39
52
Embodied Water, L/kg 130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
33
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
3000
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 53
32
Strength to Weight: Bending, points 26 to 37
25
Thermal Diffusivity, mm2/s 4.6
15
Thermal Shock Resistance, points 30 to 50
35

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
87.1 to 90.5
Iron (Fe), % 71.9 to 79.9
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Nickel (Ni), % 3.5 to 5.5
9.5 to 10.5
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.0025
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5