MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. S31260 Stainless Steel

Both S15500 stainless steel and S31260 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 6.8 to 16
23
Fatigue Strength, MPa 350 to 650
370
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
80
Shear Strength, MPa 540 to 870
500
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
790
Tensile Strength: Yield (Proof), MPa 590 to 1310
540

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 820
1100
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 39
53
Embodied Water, L/kg 130
180

Common Calculations

PREN (Pitting Resistance) 15
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
160
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
720
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 53
28
Strength to Weight: Bending, points 26 to 37
24
Thermal Diffusivity, mm2/s 4.6
4.3
Thermal Shock Resistance, points 30 to 50
22

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 14 to 15.5
24 to 26
Copper (Cu), % 2.5 to 4.5
0.2 to 0.8
Iron (Fe), % 71.9 to 79.9
59.6 to 67.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 3.5 to 5.5
5.5 to 7.5
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 0
0.1 to 0.5