MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. S32050 Stainless Steel

Both S15500 stainless steel and S32050 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
220
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 6.8 to 16
46
Fatigue Strength, MPa 350 to 650
340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
81
Shear Strength, MPa 540 to 870
540
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
770
Tensile Strength: Yield (Proof), MPa 590 to 1310
370

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 440
440
Maximum Temperature: Mechanical, °C 820
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
12
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.0
Embodied Energy, MJ/kg 39
81
Embodied Water, L/kg 130
210

Common Calculations

PREN (Pitting Resistance) 15
48
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
290
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 53
27
Strength to Weight: Bending, points 26 to 37
23
Thermal Diffusivity, mm2/s 4.6
3.3
Thermal Shock Resistance, points 30 to 50
17

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 14 to 15.5
22 to 24
Copper (Cu), % 2.5 to 4.5
0 to 0.4
Iron (Fe), % 71.9 to 79.9
43.1 to 51.8
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 3.5 to 5.5
20 to 23
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020