MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. S32520 Stainless Steel

Both S15500 stainless steel and S32520 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 35 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is S32520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 6.8 to 16
28
Fatigue Strength, MPa 350 to 650
460
Poisson's Ratio 0.28
0.27
Reduction in Area, % 17 to 40
46
Rockwell C Hardness 27 to 46
28
Shear Modulus, GPa 75
80
Shear Strength, MPa 540 to 870
560
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
860
Tensile Strength: Yield (Proof), MPa 590 to 1310
630

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 820
1100
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.0
Embodied Energy, MJ/kg 39
55
Embodied Water, L/kg 130
180

Common Calculations

PREN (Pitting Resistance) 15
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
220
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
960
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 53
31
Strength to Weight: Bending, points 26 to 37
26
Thermal Diffusivity, mm2/s 4.6
4.1
Thermal Shock Resistance, points 30 to 50
24

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 14 to 15.5
24 to 26
Copper (Cu), % 2.5 to 4.5
0.5 to 2.0
Iron (Fe), % 71.9 to 79.9
57.3 to 66.8
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 3.5 to 5.5
5.5 to 8.0
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.020