MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. S32808 Stainless Steel

Both S15500 stainless steel and S32808 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is S32808 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 6.8 to 16
17
Fatigue Strength, MPa 350 to 650
350
Poisson's Ratio 0.28
0.27
Rockwell C Hardness 27 to 46
28
Shear Modulus, GPa 75
81
Shear Strength, MPa 540 to 870
480
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
780
Tensile Strength: Yield (Proof), MPa 590 to 1310
570

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 440
460
Maximum Temperature: Mechanical, °C 820
1100
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
14
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
24
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.0
Embodied Energy, MJ/kg 39
57
Embodied Water, L/kg 130
180

Common Calculations

PREN (Pitting Resistance) 15
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 53
27
Strength to Weight: Bending, points 26 to 37
24
Thermal Diffusivity, mm2/s 4.6
3.8
Thermal Shock Resistance, points 30 to 50
21

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 14 to 15.5
27 to 27.9
Copper (Cu), % 2.5 to 4.5
0
Iron (Fe), % 71.9 to 79.9
58.1 to 62.8
Manganese (Mn), % 0 to 1.0
0 to 1.1
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 3.5 to 5.5
7.0 to 8.2
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Tungsten (W), % 0
2.1 to 2.5