MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. 1350 Aluminum

S17400 stainless steel belongs to the iron alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 440
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 11 to 21
1.4 to 30
Fatigue Strength, MPa 380 to 670
24 to 50
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 570 to 830
44 to 110
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
68 to 190
Tensile Strength: Yield (Proof), MPa 580 to 1250
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 850
170
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1400
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 17
230
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 39
160
Embodied Water, L/kg 130
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
4.4 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 32 to 49
7.0 to 19
Strength to Weight: Bending, points 27 to 35
14 to 27
Thermal Diffusivity, mm2/s 4.5
96
Thermal Shock Resistance, points 30 to 46
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Boron (B), % 0
0 to 0.050
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0 to 0.010
Copper (Cu), % 3.0 to 5.0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 70.4 to 78.9
0 to 0.4
Manganese (Mn), % 0 to 1.0
0 to 0.010
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1