MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. 6008 Aluminum

S17400 stainless steel belongs to the iron alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 11 to 21
9.1 to 17
Fatigue Strength, MPa 380 to 670
55 to 88
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 570 to 830
120 to 170
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
200 to 290
Tensile Strength: Yield (Proof), MPa 580 to 1250
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 850
180
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 17
190
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
49
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
160

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.5
Embodied Energy, MJ/kg 39
160
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
76 to 360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 32 to 49
21 to 29
Strength to Weight: Bending, points 27 to 35
28 to 35
Thermal Diffusivity, mm2/s 4.5
77
Thermal Shock Resistance, points 30 to 46
9.0 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0 to 0.3
Copper (Cu), % 3.0 to 5.0
0 to 0.3
Iron (Fe), % 70.4 to 78.9
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.0
0 to 0.3
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15