MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. ACI-ASTM CB6 Steel

Both S17400 stainless steel and ACI-ASTM CB6 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 21
18
Fatigue Strength, MPa 380 to 670
410
Poisson's Ratio 0.28
0.28
Reduction in Area, % 40 to 62
40
Shear Modulus, GPa 75
77
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
880
Tensile Strength: Yield (Proof), MPa 580 to 1250
660

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 850
870
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
17
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
12
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 39
36
Embodied Water, L/kg 130
130

Common Calculations

PREN (Pitting Resistance) 16
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
150
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 49
32
Strength to Weight: Bending, points 27 to 35
26
Thermal Diffusivity, mm2/s 4.5
4.6
Thermal Shock Resistance, points 30 to 46
31

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.060
Chromium (Cr), % 15 to 17
15.5 to 17.5
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 70.4 to 78.9
74.4 to 81
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 3.0 to 5.0
3.5 to 5.5
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030