MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. EN 1.4901 Stainless Steel

Both S17400 stainless steel and EN 1.4901 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 21
19
Fatigue Strength, MPa 380 to 670
310
Impact Strength: V-Notched Charpy, J 7.6 to 86
38
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 570 to 830
460
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
740
Tensile Strength: Yield (Proof), MPa 580 to 1250
490

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Corrosion, °C 450
380
Maximum Temperature: Mechanical, °C 850
650
Melting Completion (Liquidus), °C 1440
1490
Melting Onset (Solidus), °C 1400
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
26
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 39
40
Embodied Water, L/kg 130
89

Common Calculations

PREN (Pitting Resistance) 16
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 49
26
Strength to Weight: Bending, points 27 to 35
23
Thermal Diffusivity, mm2/s 4.5
6.9
Thermal Shock Resistance, points 30 to 46
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.070
0.070 to 0.13
Chromium (Cr), % 15 to 17
8.5 to 9.5
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 70.4 to 78.9
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 3.0 to 5.0
0 to 0.4
Niobium (Nb), % 0.15 to 0.45
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010