MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. Titanium 6-2-4-2

S17400 stainless steel belongs to the iron alloys classification, while titanium 6-2-4-2 belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is titanium 6-2-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
8.6
Fatigue Strength, MPa 380 to 670
490
Poisson's Ratio 0.28
0.32
Reduction in Area, % 40 to 62
21
Shear Modulus, GPa 75
40
Shear Strength, MPa 570 to 830
560
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
950
Tensile Strength: Yield (Proof), MPa 580 to 1250
880

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 850
300
Melting Completion (Liquidus), °C 1440
1590
Melting Onset (Solidus), °C 1400
1540
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
6.9
Thermal Expansion, µm/m-K 11
9.5

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
0.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
42
Density, g/cm3 7.8
4.6
Embodied Carbon, kg CO2/kg material 2.7
32
Embodied Energy, MJ/kg 39
520
Embodied Water, L/kg 130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
79
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
3640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 32 to 49
57
Strength to Weight: Bending, points 27 to 35
46
Thermal Diffusivity, mm2/s 4.5
2.8
Thermal Shock Resistance, points 30 to 46
67

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.070
0 to 0.050
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 70.4 to 78.9
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
1.8 to 2.2
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.060 to 0.12
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.8 to 2.2
Titanium (Ti), % 0
83.7 to 87.2
Zirconium (Zr), % 0
3.6 to 4.4
Residuals, % 0
0 to 0.4